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ABSTRACT
As CMOS devices are scaled down into the nanometer regime,

concerns about reliability are mounting. Instead of viewing nano-
scale characteristics as an impediment, technologies such as PCMOS
exploit them as a source of randomness. The technology generates
random numbers that are used in probabilistic algorithms. With the
PCMOS approach, different voltage levels are used to generate dif-
ferent probability values. If many different probability values are
required, this approach becomes prohibitively expensive.

In this work, we demonstrate a novel technique for synthesizing
logic that generates new probabilities from a given set of probabil-
ities. Three different scenarios are considered in terms of whether
the given probabilities can be duplicated and whether there is free-
dom to choose them. In the case that the given probabilities cannot
be duplicated and are predetermined, we provide a solution that is
FPGA-mappable. In the case that the given probabilities cannot be
duplicated but can be freely chosen, we provide an optimal choice.
In the case that the given probabilities can be duplicated and can
be freely chosen, we demonstrate how to generate arbitrary deci-
mal probabilities from small sets – a single probability or a pair of
probabilities – through combinational logic.

1. INTRODUCTION AND BACKGROUND
It can be argued that the entire success of the semiconductor in-

dustry has been predicated on a single, fundamental abstraction,
namely, that digital computation consists of a deterministic sequence
of zeros and ones. From the logic level up, the precise Boolean
functionality of a circuit is prescribed; it is up to the physical layer
to produce voltage values that can be interpreted as the exact logical
values that are called for. This abstraction delivers all the benefits of
the digital paradigm: precision, modularity, extensibility. And yet,
as circuits are scaled down into the nanometer regime, delivering
the physical circuits underpinning the abstraction is increasingly
costly and challenging. Power consumption is a major concern [1].
Also, soft errors caused by ionizing radiation are a problem, partic-
ularly for circuits operating in harsh environments [2].

We advocate a novel view for digital computation: instead of
transforming definite inputs into definite outputs – say, Boolean,
integer, or real values into the same – we design circuits that trans-
form probability values into probability values; so, conceptually,
real-valued probabilities are both the inputs and the outputs. The
circuits process random bit streams; these are digital, consisting of
zeros and ones; they are processed by ordinary logic gates, such as
AND and OR. The inputs and outputs are encoded through the sta-
tistical distribution of the signals instead of specific values. When
cast in terms of probabilities, the computation is robust [3].

The topic of computing probabilistically dates back to von Neu-
mann [4]. Many flavors of probabilistic design have been pro-
posed for circuit-level constructs. For instance, [5] presents a de-
sign methodology based on Markov random fields, geared toward
nanotechnology. Recent work on probabilistic CMOS (PCMOS)
is a promising approach. Instead of viewing variable circuit char-
acteristics as an impediment, PCMOS exploits them as a source of
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randomness. The technology generates random numbers that are
used in probabilistic algorithms [6].
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Figure 1: A PCMOS switch. It consists of an inverter with its input
coupled to a noise source.

A PCMOS switch is an inverter with the input coupled to a noise
source, as shown in Figure 1. With the input Vin set to 0 volts, the
output of the inverter has a certain probability p (0 ≤ p ≤ 1) of
being at logical one. Suppose that the probability density function
of the noise voltage V is f(V ) and that the trip point of the inverter
is Vdd/2, where Vdd is the supply voltage. Then, the probability
that the output is one equals the probability that the input to the
inverter is below Vdd/2, or

p =

Z Vdd/2

−∞
f(V ) dV.

Thus, with a given noise distribution, p can be modulated by chang-
ing Vdd.

In [7], PCMOS switches are applied to form a probabilistic system-
on-a-chip (PSOC) architecture that is used to execute probabilistic
algorithms. In essence, the PSOC architecture consists of a host
processor that executes the deterministic part of the algorithm, and
a coprocessor built with PCMOS switches that executes the prob-
abilistic part of the algorithm. The PCMOS switches in the co-
processor are configured to realize the set of probabilities needed
by the algorithm. This approach achieves an energy-performance-
product improvement over conventional architectures for some prob-
abilistic algorithms.

However, as is pointed out in [7], a serious problem must be
overcome before PCMOS can become a viable design strategy for
many applications: since the probability p for each PCMOS switch
is controlled by a specific voltage level, different voltage levels are
required to generate different probability values. For an applica-
tion that requires many different probability values, many voltage
regulators are required; this is costly in terms of area as well as
energy.

This paper presents a synthesis strategy to mitigate this issue: we
describe a method for transforming probability values from a small
set to many different probability values entirely through combi-
national logic. For what follows, when we say “with probability
p,” we mean “with a probability p of being at logical one.” When
we say “a circuit,” we mean a combinational circuit built with logic
gates.

Example 1
Suppose that we have a set of probabilities S = {0.4, 0.5}. As
illustrated in Figure 2, we can generate new probabilities from this
set:
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Figure 2: An illustration of generating new probabilities from a given
set of probabilities through logic. (a): An inverter implementing pz =
1− px. (b): An AND gate implementing pz = px · py .

1. An inverter with an input x with probability 0.4 will have
output z with probability 0.6 since for an inverter,

P (z = 1) = P (x = 0) = 1− P (x = 1). (1)

2. An AND gate with inputs x and y with independent proba-
bilities 0.4 and 0.5, respectively, will have an output z with
probability 0.2 since for an AND gate,

P (z = 1) = P (x = 1, y = 1)

= P (x = 1)P (y = 1).
(2)

Thus, using only combinational logic, we can get the additional set
of probabilities {0.2, 0.6}. �

Motivated by this example, we consider the problem of how to
synthesize combinational logic to generate a required probability q
from a given set of probabilities S = {p1, p2, . . . , pn}. We con-
sider three scenarios:

Scenario One: The probabilities in a set S are predetermined and
each element of S can be used as the input probability no
more than once. (We say that the probability is non-duplicable.)
The problem is to construct a circuit that has input probabil-
ities taken from S and produces an output probability q.

Scenario Two: The probabilities in a set S can be freely chosen
and each element in S can be used as the input probability
no more than once. The problem is to find a good set S such
that, for an arbitrary probability, we can construct a circuit to
generate it.

Scenario Three: The probabilities in a set S can be freely chosen
and each element in S can be used as the input probability
any number of times. (We say that the probability is dupli-
cable.) The problem is to find a good set S such that, for an
arbitrary probability, we can construct a circuit to generate it.

Our contributions are:

1. We provide an FPGA-mappable solution to the problem in
Scenario One. We transform the problem into a linear pro-
gramming problem.

2. We prove an optimal choice of a set S for the problem in
Scenario Two. Again, the solution is FPGA-mappable.

3. We provide a set S consisting of two elements that can be
used to generate arbitrary decimal probabilities in Scenario
Three. The proof is constructive: we show a procedure for
synthesizing logic that generates such probabilities.

4. We provide a set S consisting of a single element that can be
used to generate arbitrary decimal probabilities in Scenario
Three. (This is essentially a mathematical result, since the
probability value is not a simple value, but the root of a poly-
nomial.)

5. Finally, we propose a practical algorithm based on fraction
factorization, which optimizes the depth of the circuit that
generates a decimal fraction in Scenario Three.

2. RELATED WORK
We point to three related pieces of research:

• In an early set of papers, Gill discussed the problem of gen-
erating a new set of probabilities from a given set of proba-
bilities [8, 9]. He focused on synthesizing a sequential state
machine to generate the required probabilities.

• In recent work, the proponents of PCMOS discussed the prob-
lem of synthesizing combinational logic to generate proba-
bility values [7]. These authors suggest a tree-based circuit.
Their objective is to realize a set of required probabilities
with minimal additional logic. This is positioned as future
work; no details are given.

• Wilhelm and Bruck [10] proposed a general method for syn-
thesizing switching circuits to achieve a desired probabil-
ity. Their designs consist of relay switches that are open or
closed with specified probabilities. They proposed an algo-
rithm that generates circuits of optimal size for any binary
fraction.

In contrast to Gill’s work and Wilhelm and Bruck’s work, we
focus on combinational circuits built with logic gates. Our ap-
proach dovetails nicely with the circuit-level PCMOS constructs.
It is complementary and orthogonal to the switch-based approach
of Wilhelm and Bruck. Note that Wilhelm and Bruck assume that
the probabilities in the given set S can be duplicated. We also con-
sider the case where they cannot. Also, our scheme can generate
arbitrary decimal probabilities, whereas the method of Wilhelm and
Bruck only generates binary fractions.

3. PROBLEM FORMULATION AND
SOLUTION

As stated in Section 1, we consider three scenarios. These hinge
on:

1. Whether the set S is given or can be freely chosen.
2. Whether the probabilities from S are duplicable.

In all three scenarios, we assume that the probabilistic inputs are
independent.

3.1 Scenario One: Set S is given and the
elements are not duplicable.

The problem considered in this scenario is: given a set S =
{p1, p2, . . . , pn} and a required probability q, construct a circuit
that, given inputs with probabilities from S, produces an output
with probability q. Each value of S can be utilized as an input
probability no more than once.

Although the assumption that each element of S can be utilized
as an input probability only once might seem contrived, in fact, this
constraint occurs if a circuit has a bounded number of inputs and
each input is fixed at a specific probability. For instance, consider
an n-input lookup table FPGA with each input having a predeter-
mined probability. In this case, the set of predetermined input prob-
abilities forms the set S with each element appearing in the circuit
no more than once.

With the assumption that the probabilities are non-duplicable,
we are building a circuit with n inputs, the i-th input of which has
probability pi. (If a probability is not utilized, then the correspond-
ing input is just a dummy.)

Our solution to this problem is based on the construction of a
truth table for n variables. Each row of the truth table is annotated
with the probability that the corresponding input combination oc-
curs. Assume that the truth table has n variables x1, x2, . . . , xn

and xi has probability pi. Then, the probability of the input com-
bination x1 = a1, x2 = a2, . . . , xn = an (ai ∈ {0, 1}, for i =
1, . . . , n) is

P (x1 = a1, x2 = a2, . . . , xn = an) =

nY
i=1

P (xi = ai).



A truth table for a two-input XOR gate is shown in Table 1. The
fourth column is the probability that each input combination oc-
curs. Here P (x = 1) = px and P (y = 1) = py .

Table 1: A truth table for the XOR of two variables listing the proba-
bility that each input combination occurs.

x y z Probability
0 0 0 (1− px)(1− py)
0 1 1 (1− px)py
1 0 1 px(1− py)
1 1 0 pxpy

The output probability is the sum of the probabilities of input
combinations that produce an output of one. Mathematically, as-
sume that the probability of the i-th input combination (correspond-
ing to minterm mi) is ri (0 ≤ i ≤ 2n − 1) and that the output of
the circuit is zi (zi ∈ {0, 1}, 0 ≤ i ≤ 2n − 1). Then, the output
probability is

po =

2n−1X
i=0

ziri. (3)

For the example in Table 1, the output probability is

po = r1 + r2 = (1− px)py + px(1− py).

Thus, constructing a circuit with output probability q is the same
problem as determining the zi’s such that Equation (3) evaluates to
q. In the general case, depending on the values of pi and q, it is
possible that q cannot be exactly realized by any circuit. The prob-
lem then is to determine the zi’s such that the difference between
the value of Equation (3) and q is minimized. We can formulate
this as the following optimization problem:

Find zi that minimizes
˛̨̨P2n−1

i=0 ziri − q
˛̨̨

(4)

such that zi ∈ {0, 1} for i = 0, 1, . . . , 2n − 1. (5)

This optimization problem is a linear 0-1 programming problem
that can be solved using standard techniques. A circuit implement-
ing the solution can be synthesized readily. The solution is also
applicable for use in an n-input lookup-table based FPGA archi-
tecture: the i-th input bit of the FPGA is just zi.

3.2 Scenario Two: Set S is not given and
the elements are not duplicable

In Scenario One, when solving the optimization problem, the
minimal difference

˛̨̨P2n−1
i=0 ziri − q

˛̨̨
is actually a function of q,

which we denote as h(q). That is,

h(q) = min
∀i,zi∈{0,1}

˛̨̨̨
˛
2n−1X
i=0

ziri − q

˛̨̨̨
˛ . (6)

Assume that q is uniformly distributed on the unit interval. The
mean of h(q) for q ∈ [0, 1] is solely determined by the set S; it
gives the overall approximation error of S. We can see that the
smaller the mean is, the better the set S is. Thus, the mean of h(q)
is a good measure for the quality of S, which we denote as H(S).
That is,

H(S) =

Z 1

0

h(q) dq. (7)

The problem considered in this scenario is: given an integer n,
choose a set S of size n of values in the unit interval that produces
a minimal H(S).

Note that the only difference between Scenario One and Sce-
nario Two is that in Scenario Two, we are able to choose the ele-
ments of S. When constructing circuits, each element of S is still
constrained to be utilized no more than once. As in Scenario One,
we are constructing a circuit with n inputs to realize each required

probability. A circuit with n inputs has a truth table consisting of
2n rows. There are a total of 22n

different truth tables for n inputs.
For a given input probability assignment, each truth table can give
a distinct output probability. Thus, we can get at most 22n

distinct
probabilities for a set S of size n.

Example 2
Consider the truth table shown in Table 2. Here, we assume that
P (x = 1) = 4/5 and P (y = 1) = 2/3. The corresponding
probability of each input combination is given in the fourth column.
For different truth table output column assignments (z0z1z2z3), we
obtain different output probabilities. For example, if (z0z1z2z3) =
(1010), then the output probability is 5/15; if (z0z1z2z3) = (1011),
then the output probability is 13/15. There are 16 different assign-
ments for (z0z1z2z3) and so we can get a maximum of 16 different
output probabilities. In this example, they are 0, 1/15, . . . , 14/15
and 1. �

Table 2: A probability truth table for two variables. The output col-
umn (z0z1z2z3) has a total of 16 different assignments.

x y z Probability
0 0 z0 1/15
0 1 z1 2/15
1 0 z2 4/15
1 1 z3 8/15

Let N = 22n

. For a set S with n elements, call the N possible
probability values b1, b2, . . . , bN and assume that they are arranged
in increasing order. That is b1 ≤ b2 ≤ · · · ≤ bN . Note that if the
output column of the truth table consists of all zeros, the output
probability is 0. If it consists of all ones, the output probability is
1. Thus, we have b1 = 0 and bN = 1.

The first question is: what is a lower bound for H(S)? We have
the following theorem.

Theorem 1
The lower bound for H(S) is

1

4(N − 1)
.

PROOF. Note that for a q satisfying bi ≤ q ≤ bi + bi+1

2
,

h(q) = q − bi; for a q satisfying
bi + bi+1

2
< q ≤ bi+1, h(q) =

bi+1 − q. Thus,

H(S) =

Z 1

0

h(q) dq

=

N−1X
i=1

0@Z bi+bi+1
2

bi

(q − bi) dq +

Z bi+1

bi+bi+1
2

(bi+1 − q) dq

1A
=

1

4

N−1X
i=1

(bi+1 − bi)
2.

(8)

Let ci = bi+1 − bi, for i = 1, . . . , N − 1. Since
PN−1

i=1 ci =
bN − b1 = 1, by Cauchy-Schwarz inequality, we have

H(S) =
1

4

N−1X
i=1

c2
i ≥

1

4(N − 1)

 
N−1X
i=1

ci

!2

=
1

4(N − 1)
. (9)

The second question is: can this lower bound for H(S) be achieved?
We will show that the lower bound is achieved for the set

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n− 1}. (10)



Lemma 1
For a truth table on the inputs x1, . . . , xn arranged in the order
xn, . . . , x1, let

P (xk = 1) =
22k−1

22k−1 + 1
, for k = 1, . . . , n.

The probability of the i-th input combination (0 ≤ i ≤ 2n − 1) is
2i

22n − 1
.

PROOF. We prove the lemma by induction on n.

Base case: When n = 1, by assumption, P (x1 = 1) =
2

3
. The 0-

th input combination is x1 = 0 and has probability
1

3
=

20

22n − 1
.

The 1-st input combination is x1 = 1 and has probability
2

3
=

21

22n − 1
.

Inductive step: Assume that the statement holds for (n− 1). De-
note the probability of the i-th input combination in the truth table
of n variables as pi,n. By the induction hypothesis, for 0 ≤ i ≤
2n−1 − 1,

pi,n−1 =
2i

22n−1 − 1
.

Consider the truth table of n variables. Note that the input proba-
bilities for x1, . . . , xn−1 are the same as for (n− 1) and

P (xn = 1) =
22n−1

22n−1 + 1
.

When 0 ≤ i ≤ 2n−1 − 1, the i-th row of the truth table has
xn = 0; the assignment to the rest of the variables is the same as
the i-th row of the truth table of (n− 1) variables. Thus,

pi,n = P (xn = 0) · pi,n−1 =
1

22n−1 + 1
· 2i

22n−1 − 1

=
2i

22n − 1
.

(11)

When 2n−1 ≤ i ≤ 2n − 1, the i-th row of the truth table has
xn = 1; the assignment to the rest of the variables is the same as
the (i− 2n−1)-th row of the truth table of (n− 1) variables. Thus,

pi,n = P (xn = 1) · pi−2n−1,n−1 =
22n−1

22n−1 + 1
· 2i−2n−1

22n−1 − 1

=
2i

22n − 1
.

(12)

Combining Equation (11) and (12), the statement holds for n. Thus,
the statement in the lemma holds for all n.
Based on Lemma 1, we will show that the set S in Equation (10)
achieves the lower bound for H(S).

Theorem 2
The set S = {p|p =

22k

22k + 1
, k = 0, 1, . . . , n − 1} achieves the

lower bound
1

4(N − 1)
for H(S).

PROOF. By Lemma 1, for the given set S, the probability of the

i-th (0 ≤ i ≤ 2n − 1) input combination is
2i

22n − 1
. Therefore,

the set of N = 22n

possible probability values is

R = {p|p =

2n−1X
i=0

zi
2i

22n − 1
, zi ∈ {0, 1},∀i = 0, . . . , 2n − 1}.

It is not hard to see that the N possible probability values are, in
increasing order,

b0 = 0, b1 =
1

N − 1
, . . . , bi =

i

N − 1
, . . . , bN−1 = 1.

(Example 2 shows the situation for n = 2. We can see that with
the set S = {2/3, 4/5}, we can get 16 possible probabilities:
0, 1/15, . . . , 14/15 and 1.)

Thus, by Equation (8), we have H(S) =
1

4(N − 1)
.

To summarize, if we have the freedom to choose n real numbers
for the input probability set S but each number can only be utilized
once, the best choice is to let

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n− 1}.

With the optimal set S, the truth table for a required probability
q is easy to determine. First, round q to the closest fraction in the

form of
i

22n − 1
. Suppose the closest fraction is

g(q)

22n − 1
. Then,

the output of the i-th row of the truth table is set as the i-th least
significant digit of the binary representation of g(q). Again, the
solution is FPGA-mappable.

3.3 Scenario Three: Set S is not given and
the elements are duplicable

In this scenario, we assume that the set of probabilities can be
freely chosen. Once the set has been determined, each element of
the set can be used as an input probability any number of times.
The probabilities are assumed to be independent. As pointed out
in [7], the cost of generating each input probability value is large.
Accordingly, we want to minimize the size of the set S.

A similar problem to this is considered in [10]. These authors
consider switching circuits instead of logic gates. They provide
a scheme that uses a minimal number of probabilistic switches to
realize any binary fraction. They show that with the set S = {0.5}
they can generate arbitrary binary fractions.

3.3.1 Generating Decimal Fractions
In our work, we consider the case where the required probability

is represented as a decimal number. The problem is to find the
smallest-sized set S that can be used to realize arbitrary decimal
fractions. We first show that a set S consisting of two values can
generate arbitrary decimal fractions.

Theorem 3
With circuits consisting of fanin-two AND gates and inverters, we
can generate arbitrary decimal fractions as output probabilities from
the input probability set S = {0.4, 0.5}.

PROOF. First, we note that an inverter with a probabilistic input
gives an output probability equal to one minus the input probability,
as was shown in Equation (1). An AND gate with two probabilis-
tic inputs performs a multiplication on the two input probabilities,
as was shown in Equation (2). Thus, we need to prove: with the
two operations 1 − x and x · y, we can generate arbitrary deci-
mal fractions as output probabilities from the input probability set
S = {0.4, 0.5}. We prove this statement by induction on the num-
ber of digits n after the decimal point.

Base case:

1. n = 0. It is trivial to generate 0 and 1.

2. n = 1. We can generate 0.1, 0.2 and 0.3 as follows:

0.1 = 0.4× 0.5× 0.5,

0.2 = 0.4× 0.5,

0.3 = (1− 0.4)× 0.5.

Since we can generate the decimal fractions 0.1, 0.2, 0.3 and
0.4, we can generate 0.6, 0.7, 0.8 and 0.9 with an extra 1−x
operation. Together with the given value 0.5, we can gen-
erate any decimal fraction with one digit after the decimal
point.



Inductive step:
Assume that the statement holds for all m ≤ (n− 1). Consider an
arbitrary decimal fraction z with n digits after the decimal point.
Let u = 10n · z. Here u is an integer.

Consider the following four cases.

1. The case where 0 ≤ z ≤ 0.2.

(a) The integer u is divisible by 2. Let w = 5z. Then
0 ≤ w ≤ 1 and w = (u/2) · 10−n+1, having at most
(n − 1) digits after the decimal point. Thus, based on
the induction hypothesis, we can generate w. It follows
that z can also be generated as z = 0.4× 0.5× w.

(b) The integer u is not divisible by 2 and 0 ≤ z ≤ 0.1.
Let w = 10z. Then 0 ≤ w ≤ 1 and w = u · 10−n+1,
having at most (n − 1) digits after the decimal point.
Thus, based on the induction hypothesis, we can gen-
erate w. It follows that z can also be generated as
z = 0.4× 0.5× 0.5× w.

(c) The integer u is not divisible by 2 and 0.1 < z ≤ 0.2.
Let w = 2 − 10z. Then 0 ≤ w < 1 and w = 2 − u ·
10−n+1, having at most (n−1) digits after the decimal
point. Thus, based on the induction hypothesis, we can
generate w. It follows that z can also be generated as
z = (1− 0.5× w)× 0.4× 0.5.

2. The case where 0.2 < z ≤ 0.4.

(a) The integer u is divisible by 4. Let w = 2.5z. Then
0 < w ≤ 1 and w = (u/4) · 10−n+1, having at most
(n − 1) digits after the decimal point. Thus, based on
the induction hypothesis, we can generate w. It follows
that z can be generated as z = 0.4× w.

(b) The integer u is not divisible by 4 but is divisible by 2.
Let w = 2 − 5z. Then 0 ≤ w < 1 and w = 2 −
(u/2) · 10−n+1, having at most (n− 1) digits after the
decimal point. Thus, based on the induction hypothesis,
we can generate w. It follows that z can be generated
as z = (1− 0.5× w)× 0.4.

(c) The integer u is not divisible by 2 and 0.2 < u ≤ 0.3.
Let w = 10z − 2. Then 0 < w ≤ 1 and w =
u · 10−n+1 − 2, having at most (n − 1) digits after
the decimal point. Thus, based on the induction hy-
pothesis, we can generate w. It follows that z can also
be generated as z = (1− (1− 0.5×w)× 0.5)× 0.4.

(d) The integer u is not divisible by 2 and 0.3 < u ≤
0.4. Let w = 4 − 10z. Then 0 ≤ w < 1 and w =
4− u · 10−n+1, having at most (n− 1) digits after the
decimal point. Thus, based on the induction hypothesis,
we can generate w. It follows that z can be generated
as z = (1− 0.5× 0.5× w)× 0.4.

3. The case where 0.4 < z ≤ 0.5. Let w = 1 − 2z. Then
0 ≤ w < 0.2 and w falls into case 1. Thus, we can generate
w. It follows that z can be generated as z = 0.5× (1− w).

4. The case where 0.5 < z ≤ 1. Let w = 1 − z. Then
0 ≤ w < 0.5 and w falls into one of the above three cases.
Thus, we can generate w. It follows that z can be generated
as z = 1− w.

For all of the above cases, we proved that z can be generated
with the two operations 1 − x and x · y on the input probability
set S = {0.4, 0.5}. Thus, we proved the statement for all m ≤ n.
Thus, the statement holds for all integers n.

Based on the proof above, we derive an algorithm to synthesize a
circuit that generates an arbitrary decimal fraction output probabil-
ity z from the input probability set S = {0.4, 0.5}. This is shown
in Algorithm 1.

The function GetDigits(z) in Algorithm 1 returns the number
of digits after the decimal point of z. The while loop continues

Algorithm 1 Synthesize a circuit consisting of AND gates and inverters
that generates a required decimal fraction probability from the given prob-
ability set S = {0.4, 0.5}.
1: {Given an arbitrary decimal fraction 0 ≤ z ≤ 1.}
2: Initialize ckt;
3: while GetDigits(z) > 1 do
4: (ckt, z)⇐ ReduceDigit(ckt, z);
5: AddBaseCkt(ckt, z); {Base case: z has at most one digit after the dec-

imal point.}
6: return ckt;

until z has at most one digit after the decimal point. During the
loop, it calls the function ReduceDigit(ckt, z), which synthesizes
a partial circuit such that the number of digits after the decimal
point of z is reduced, which corresponds to the inductive step in the
proof. Finally, Algorithm 1 calls the function AddBaseCkt(ckt, z)
to synthesize a circuit that realizes a number having at most one
digit after the decimal point; this corresponds to the base case of
the proof.

Algorithm 2 ReduceDigit(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal fraction 0 ≤ z ≤
1.}

2: n⇐ GetDigits(z);
3: if z > 0.5 then {Case 4}
4: z ⇐ 1− z; AddInverter(ckt);
5: if 0.4 < z ≤ 0.5 then {Case 3}
6: z ⇐ z/0.5; AddAND(ckt, 0.5);
7: z ⇐ 1− z; AddInverter(ckt);
8: if z ≤ 0.2 then {Case 1}
9: z ⇐ z/0.4; AddAND(ckt, 0.4);

10: z ⇐ z/0.5; AddAND(ckt, 0.5);
11: if GetDigits(z) < n then
12: go to END;
13: if z > 0.5 then
14: z ⇐ 1− z; AddInverter(ckt);
15: z = z/0.5; AddAND(ckt, 0.5);
16: else {Case 2: 0.2 < z ≤ 0.4}
17: z ⇐ z/0.4; AddAND(ckt, 0.4);
18: if GetDigits(z) < n then
19: go to END;
20: z ⇐ 1− z; AddInverter(ckt);
21: z ⇐ z/0.5; AddAND(ckt, 0.5);
22: if GetDigits(z) < n then
23: go to END;
24: if z > 0.5 then
25: z ⇐ 1− z; AddInverter(ckt);
26: z = z/0.5; AddAND(ckt, 0.5);
27: END: return ckt, z;

Algorithm 1 builds the circuit from the output back to the in-
puts. The circuit is built up gate by gate when calling the func-
tion ReduceDigit(ckt, z), shown in Algorithm 2. Here the function
AddInverter(ckt) attaches an inverter to the input of the circuit ckt
and then changes the input of the circuit to the input of the inverter.
The function AddAND(ckt, p) attaches a fanin-two AND gate to
the input of the circuit and then changes the input of the circuit to
one of the inputs of the AND gate. The other input of the AND
gate is connected to a random input source of probability p. In Al-
gorithm 2, Lines 3–4 correspond to Case 4 in the proof; Lines 5–7
correspond to Case 3 in the proof; Lines 8–15 correspond to Case
1 in the proof; Lines 16–26 correspond to Case 2 in the proof.

The synthesized circuit has a number of gates that is linear in the
number of digits after the required value’s decimal point, since at
most 3 AND gates and 3 inverters are needed to generate a value
with n digits after the decimal point from a value with (n − 1)
digits after the decimal point.1 The number of primary inputs of
the synthesized circuit is at most 3n + 1.

1In Case 3, z is transformed into w = 1 − 2z where w is in Case 1(a).
Thus, we actually need only 3 AND gates and 1 inverter for Case 3. For the
other cases, it is not hard to see that we need at most 3 AND gates and 3
inverters.



Example 3
We show how to generate the probability value 0.757. Based on
Algorithm 1, we can derive a sequence of operations that transform
0.757 to 0.7:

0.757
1−
=⇒ 0.243

/0.4
=⇒ 0.6075

1−
=⇒ 0.3925

/0.5
=⇒ 0.785

1−
=⇒ 0.215

/0.5
=⇒ 0.43,

0.43
/0.5
=⇒ 0.86

1−
=⇒ 0.14

/0.4
=⇒ 0.35

/0.5
=⇒ 0.7.

Since 0.7 can be realized as 0.7 = 1−(1−0.4)×0.5, we obtain
the circuit shown in Figure 3. (Note that here we use a black dot to
represent an inverter.) �
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Figure 3: A circuit taking input probabilities from the set S =
{0.4, 0.5} generating a decimal output probability of 0.757.

Theorem 3 shows that there exists a pair of probabilities that can
be used to generate arbitrary decimal fractions. A stronger question
is whether we can further reduce the size of the set down to one,
i.e., whether there exists a real number 0 ≤ p ≤ 1 such that any
decimal fraction can be generated from p with combinational logic.

On the one hand, we note that if such a value p exists, then 0.4
and 0.5 can be generated from it. On the other hand, if p can gen-
erate 0.4 and 0.5, then p can generate arbitrary decimal numbers,
as was shown in Theorem 3. The following lemma shows that such
a value p that could generate 0.4 and 0.5 does, in fact, exist.

Lemma 2
The polynomial g1(t) = 10t− 20t2 + 20t3 − 10t4 − 1 has a real
root 0 < p < 0.5. This value p can generate both 0.4 and 0.5
through combinational logic.

PROOF. First, note that g1(0) = −1 < 0 and that g1(0.5) =
0.875 > 0. Based on the continuity of the function g1(t), there
exists a 0 < p < 0.5 such that g1(p) = 0. Let polynomial
g2(t) = t− 2t2 + 2t3 − t4. Thus, g2(p) = 0.1.

Note that the Boolean function

f1(x1,x2, x3, x4, x5) = (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5)

∧ (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5)

has 30 minterms, m1, m2, . . . , m30. It is not hard to verify that
with P (xi = 1) = p (i = 1, 2, 3, 4, 5), the output probability of
f1 is

p1 = 5(1− p)4p + 10(1− p)3p2 + 10(1− p)2p3 + 5(1− p)p4

= 5g2(p) = 0.5.

Thus, the probability value 0.5 can be generated. The Boolean
function

f2(x1,x2, x3, x4, x5) = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ ¬x5)

∧ (¬x2 ∨ x3 ∨ ¬x5) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4 ∨ ¬x5)

has 24 minterms, m2, m4, m5, . . . , m8, m10, m12, m13, . . . , m24,
m26, m28, m29, m30. It is not hard to verify that with

P (xi = 1) = p (i = 1, 2, 3, 4, 5),

the output probability of f2 is

p2 = 4(1− p)4p + 8(1− p)3p2 + 8(1− p)2p3 + 4(1− p)p4

= 4g2(p) = 0.4.

Thus, the probability value 0.4 can be generated.

Based on Theorem 3 and Lemma 2, we have the following theorem

Theorem 4
With the set S = {p}, where p is the root in the unit interval of
polynomial g1(t) = 10t−20t2 +20t3−10t4−1, we can generate
arbitrary decimal fractions through combinational logic.

3.3.2 Implementation
As shown in Example 3, the circuit synthesized by Algorithm 1

is in a linear style (i.e., each gate adds to the depth of the circuit).
For practical purposes, we want circuits with shallower depth. We
explore two kinds of optimizations to reduce the depth.

The first kind of optimization is at the logic level. The circuit
synthesized by Algorithm 1 is composed of inverters and AND
gates. We can reduce its depth by properly repositioning certain
AND gates, as illustrated in Figure 4.

a
b

...AND
AND

Fanin

Cone

a

b

...AND

AND

Fanin

Cone

(a) (b)

Figure 4: An illustration of balancing to reduce the depth of the cir-
cuit. Here a and b are primary inputs. (a): The circuit before balanc-
ing. (b): The circuit after balancing.

The second kind of optimization is at a higher level, based on the
factorization of the decimal fraction. We use the following example
to illustrate the basic idea.

Example 4
Suppose we want to generate the decimal fraction probability value
0.49.

Method based on Algorithm 1: We can derive the following trans-
formation sequence:

0.49
/0.5
=⇒ 0.98

1−
=⇒ 0.02

/0.4
=⇒ 0.05

/0.5
=⇒ 0.1.

The synthesized circuit is shown in Figure 5(a). Notice that the cir-
cuit is balanced and it still has 5 AND gates and depth 4.

Method based on factorization: Notice that 0.49 = 0.7×0.7. Thus,
we can generate the probability 0.7 twice and feed these values
into an AND gate. The synthesized circuit is shown in Figure 5(b).
Compared to the circuit in Figure 5(a), both the number of AND
gates and the depth of the circuit are reduced. �

Algorithm 3 shows the procedure that synthesizes the circuit
based on the factorization of the decimal fraction. The factoriza-
tion is actually carried out on the numerator. A crucial function
is PairCmp(al, ar, bl, br), which compares the integer factor pair
(al, ar) with the pair (bl, br) and returns a positive (negative) value
if the pair (al, ar) is better (worse) than the pair (bl, br). Algo-
rithm 4 shows how the function PairCmp(al, ar, bl, br) is imple-
mented.

The quality of a factor pair (al, ar) should reflect the quality
of the circuit that generates the original probability based on that
factorization. For this purpose, we define a function EstDepth(x) to
estimate the depth of the circuit that generates the decimal fraction
of a numerator x. If 1 ≤ x ≤ 9, the corresponding fraction is
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Figure 5: Synthesizing combinational logic to generate probability
0.49. (a): The circuit synthesized through Algorithm 1. (b): The circuit
synthesized based on fraction factorization.

x/10. EstDepth(x) is set as the depth of the circuit that generates
the fraction x/10, which is

EstDepth(x) =

8<:
0, x = 4, 5, 6,

1, x = 2, 3, 7, 8,

2, x = 1, 9.

Algorithm 3 ProbFactor(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal fraction 0 ≤ z ≤
1.}

2: n⇐ GetDigits(z);
3: if n ≤ 1 then
4: AddBaseCkt(ckt, z);
5: return ckt;
6: u⇐ 10nz; (ul, ur)⇐ (1, u); {u is the numerator of the fraction z}
7: for each factor pair (a, b) of integer u do
8: if PairCmp(ul, ur, a, b) < 0 then
9: (ul, ur)⇐ (a, b); {Choose the best factor pair for z}

10: w ⇐ 10n − u; (wl, wr)⇐ (1, w);
11: for each factor pair (a, b) of integer w do
12: if PairCmp(wl, wr, a, b) < 0 then
13: (wl, wr)⇐ (a, b); {Choose the best factor pair for 1− z}
14: if PairCmp(ul, ur, wl, wr) < 0 then
15: (ul, ur)⇐ (wl, wr); z ⇐ w/10n;
16: AddInverter(ckt);
17: if IsTrivialPair(ul, ur) then {ul = 1 or ur = u}
18: ReduceDigit(ckt, z); ProbFactor(ckt, z);
19: return ckt;
20: nl ⇐ dlog10(ul)e; nr ⇐ dlog10(ur)e;
21: if nl + nr > n then {Unable to factor z into two decimal fractions in

the unit interval}
22: ReduceDigit(ckt, z); ProbFactor(ckt, z);
23: return ckt;
24: zl ⇐ ul/10nl ; zr ⇐ ur/10nr ;
25: ProbFactor(cktl, zl); ProbFactor(cktr, zr);
26: Add an AND gate with output as ckt and two inputs as cktl and cktr ;
27: if nl + nr < n then
28: AddExtraLogic(ckt, n− nl − nr);
29: return ckt;

When x ≥ 10, we use a simple heuristic to estimate the depth:
we let EstDepth(x) = dlog10(x)e+ 1. The intuition behind this is
that the depth of the circuit is a monotonically increasing function
of the number of digits of x. The estimated depth of the circuit that
generates the original fraction based on the factor pair (al, ar) is

max{EstDepth(al), EstDepth(ar)}+ 1. (13)

The function PairCmp(al, ar, bl, br) essentially compares the qual-
ity of pair (al, ar) and pair (bl, br) based on Equation (13). Further
details are given in Algorithm 4.

In Algorithm 3, Lines 2–5 corresponds to the trivial fractions.
If the fraction z is non-trivial, Lines 6–9 choose the best factor
pair (ul, ur) of integer u, where u is the numerator of the fraction
z. Lines 10–13 choose the best factor pair (wl, wr) of integer w,
where w is the numerator of the fraction 1 − z. Finally, the better
factor pair of (ul, ur) and (wl, wr) is chosen. Here, we consider
the factorization on both z and 1− z, since in some cases the latter
might be better than the former. An example is z = 0.37. Note that
1− z = 0.63 = 0.7×0.9; this has a better factor pair than z itself.

Algorithm 4 PairCmp(al, ar, bl, br)

1: {Given two integer factor pairs (al, ar) and (bl, br)}
2: cl ⇐ EstDepth(al); cr ⇐ EstDepth(ar);
3: dl ⇐ EstDepth(bl); dr ⇐ EstDepth(br);
4: Order(cl, cr); {Order cl and cr , so that cl ≤ cr}
5: Order(dl, dr); {Order dl and dr , so that dl ≤ dr}
6: if cr < dr then {The circuit w.r.t. the first pair has smaller depth}
7: return 1;
8: else if cr > dr then {The circuit w.r.t. the first pair has larger depth}
9: return -1;

10: else
11: if cl < dl then {The circuit w.r.t. the first pair has fewer ANDs}
12: return 1;
13: else if cl > dl then {The circuit w.r.t. the first pair has more

ANDs}
14: return -1;
15: else
16: return 0;

After obtaining the best factor pair, we check whether we can
utilize it. Lines 17–19 check whether the factor pair (ul, ur) is
trivial. A factor pair is considered trivial if ul = 1 or ur = 1. If the
best factor pair is trivial, we call the function ReduceDigit(ckt, z)
(shown in Algorithm 2) to reduce the number of digits after the
decimal point of z. Then we perform factorization on the new z.

If the best factor pair is non-trivial, Lines 20–23 continue to
check whether the factor pair can be transformed into two deci-
mal fractions in the unit interval. Let nl be the number of digits
of the integer ul and nr be the number of digits of the integer ur .
If nl + nr > n, where n is the number of digits after the decimal
point of z, then it is impossible to utilize the factor pair (ul, ur) to
factorize z. For example, consider z = 0.143. Although we could
factorize u = 143 as 11 × 13, we could not utilize the factor pair
(11, 13) for the factorization of 0.143. The reason is that either the
factorization 0.11 × 1.3 or the factorization 1.1 × 0.13 contains a
fraction larger than 1, which cannot be a probability value.

Finally, if it is possible to utilize the best factor pair, Lines 24–
26 synthesize two circuits for fractions ul/10nl and ur/10nr , re-
spectively, and then combine these two circuits with an AND gate.
Lines 27–28 check whether n > nl + nr . If this is the case, we
have

z = u/10n = ul/10nl · ur/10nr · 0.1n−nl−nr .

We need to add an extra AND gate with one input probability
0.1n−nl−nr and the other input probability ul/10nl ·ur/10nr . The
extra logic is added through the function AddExtraLogic(ckt, m).

3.3.3 Empirical Validation
We empirically validate the effectiveness of the synthesis scheme

that was presented in the previous section. For logic-level opti-
mization, we use the “balance” command of the logic synthesis
tool ABC [11], which we find very effective in reducing the depth
of a tree-style circuit.2

Table 3 compares the quality of the circuits generated by three
different schemes. The first scheme is called “Basic,” which is
based on Algorithm 1. It generates a linear-style circuit. The
second scheme is called “Basic+Balance,” which combines Algo-
rithm 1 and the logic-level balancing algorithm. The third scheme
is called “Factor+Balance,” which combines Algorithm 3 and the
logic-level balancing algorithm. We perform experiments on a set
of target decimal probabilities that have n digits after the deci-
mal point and average the results. The table shows the results for
n ranging from 2 to 12. When n ≤ 5, we synthesize circuits
for all possible decimal fractions with n digits after the decimal
point. When n ≥ 6, we randomly choose 100000 decimal frac-
tions with n digits after the decimal point as the synthesis targets.
We show the average number of AND gates, average depth and av-
erage CPU runtime in columns “#AND,” “Depth,” and “Runtime,”
respectively.

2We find that the other combinational synthesis commands of ABC such as
“rewrite” do not affect the depth or the number of AND gates of a tree-style
AND-inverter graph.



Table 3: A comparison of the basic synthesis scheme, the basic synthesis scheme with balancing, and the factorization-based synthesis scheme with
balancing.

Number Basic Basic+Balance Factor+Balance
of Digits #AND Depth #AND Depth Runtime #AND Depth Runtime #AND Imprv. (%) Depth Imprv. (%)

n a1 d1 (ms) a2 d2 (ms) 100(a1 − a2)/a1 100(d1 − d2)/d1

2 3.67 3.67 3.67 2.98 0.22 3.22 2.62 0.22 12.1 11.9
3 6.54 6.54 6.54 4.54 0.46 5.91 3.97 0.66 9.65 12.5
4 9.47 9.47 9.47 6.04 1.13 8.57 4.86 1.34 9.45 19.4
5 12.43 12.43 12.43 7.52 0.77 11.28 5.60 0.94 9.21 25.6
6 15.40 15.40 15.40 9.01 1.09 13.96 6.17 1.48 9.36 31.5
7 18.39 18.39 18.39 10.50 0.91 16.66 6.72 1.28 9.42 35.9
8 21.38 21.38 21.38 11.99 0.89 19.34 7.16 1.35 9.55 40.3
9 24.37 24.37 24.37 13.49 0.75 22.05 7.62 1.34 9.54 43.6

10 27.37 27.37 27.37 14.98 1.09 24.74 7.98 2.41 9.61 46.7
11 30.36 30.36 30.36 16.49 0.92 27.44 8.36 2.93 9.61 49.3
12 33.35 33.35 33.35 17.98 0.73 30.13 8.66 4.13 9.65 51.8
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Figure 6: Average number of AND gates and depth of the circuit ver-
sus n.

From Table 3, we can see that both the “Basic+Balance” and
the “Factor+Balance” synthesis schemes have only millisecond-
order CPU runtimes. Compared to the “Basic+Balance” scheme,
the “Factor+Balance” scheme reduces by 10% the number of AND
gates and by more than 10% the depth of the circuit for all n. The
percentage of reduction on the depth increases with increasing n.
For n = 12, the average depth of the circuit is reduced by more
than 50%.

In Figure 6, we plot the average number of AND gates and depth
of the circuit versus n for both the “Basic+Balance” scheme and the
“Factor+Balance” scheme. Clearly, the figure shows that the “Fac-
tor+Balance” scheme is superior to the “Basic+Balance” scheme.
As shown in the figure, the average number of AND gates in the
circuits synthesized by both the “Basic+Balance” scheme and the
“Factor+Balance” scheme increases linearly with n. The average
depth of the circuit synthesized by the “Basic+Balance” scheme
also increases linearly with n. In contrast, the average depth of
the circuit synthesized by the “Factor+Balance” scheme increases
logarithmically with n.

4. REMARKS
One may question the usefulness of synthesizing a circuit that

generates arbitrary decimal fractions. Wilhelm and Bruck already
proposed a scheme for synthesizing switching circuits that generate
arbitrary binary fractions [10]. Of course, any decimal fraction can
be approximated by a binary fraction. However, we argue that the
circuits synthesized by our procedure are superior to the switching
circuits that Wilhelm and Bruck synthesize in terms of the number
of random sources needed. Consider a decimal fraction q with n
digits. The circuit to generate q, synthesized based on Algorithm 1,

has at most (3n+1) inputs, which means it needs at most (3n+1)
random sources. For the approximation error of the binary frac-
tion to q to be below 1/10n, the number of digits m of the binary
fraction should be greater than n log2 10. In [10], it is proved that
the minimal number of probabilistic switches needed to generate a
binary fraction of m digits is m. Thus, the circuit generating the bi-
nary fraction needs more than n log2 10 ≈ 3.32n random sources.
This is more than the number of random sources needed by the
circuit synthesized by our scheme.

Besides the three scenarios that we presented, there exists a fourth
scenario that we have not considered in this paper, namely one in
which the given probabilities are predetermined and are duplicable.
In this scenario, we usually are not able to generate the required
probability exactly. Thus, the problem is how to synthesize circuits
which are optimal in terms of delay and area that compute a close
approximation to the required values. We will address this problem
in future work.
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